Sequence Labelling SVMs Trained in One Pass
نویسندگان
چکیده
This paper proposes an online solver of the dual formulation of support vector machines for structured output spaces. We apply it to sequence labelling using the exact and greedy inference schemes. In both cases, the per-sequence training time is the same as a perceptron based on the same inference procedure, up to a small multiplicative constant. Comparing the two inference schemes, the greedy version is much faster. It is also amenable to higher order Markov assumptions and performs similarly on test. In comparison to existing algorithms, both versions match the accuracies of batch solvers that use exact inference after a single pass over the training examples.
منابع مشابه
Support Vector Machines for Segmental Minimum Bayes Risk Decoding of Continuous Speech
Segmental Minimum Bayes Risk (SMBR) Decoding involves the refinement of the search space into sequences of small sets of confusable words. We describe the application of Support Vector Machines (SVMs) as discriminative models for the refined search spaces. We show that SVMs, which in their basic formulation are binary classifiers of fixed dimensional observations, can be used for continuous spe...
متن کاملUse of Support Vector Learning for Chunk Identification
1 Introduction In this paper, we explore the use of Support Vector Machines (SVMs) for CoNLL-2000 shared task, chunk identification. SVMs are so-called large margin classifiers and are well-known as their good generalization performance. We investigate how SVMs with a very large number of features perform with the classification task of chunk labelling.
متن کاملCode Breaking for Automatic Speech Recognition
Code Breaking is a divide and conquer approach for sequential pattern recognition tasks where we identify weaknesses of an existing system and then use specialized decoders to strengthen the overall system. We study the technique in the context of Automatic Speech Recogniton. Using the lattice cutting algorithm, we first analyze lattices generated by a state-of-the-art speech recognizer to spot...
متن کاملOn the Use of Non-Linear Polynomial Kernel SVMs in Language Recognition
Reduced-dimensional supervector representations are shown to outperform their supervector counterparts in a variety of speaker recognition tasks. They have been exploited in automatic language verification (ALV) tasks as well but, to the best of our knowledge, their performance is comparable with their supervector counterparts. This paper demonstrates that nonlinear polynomial kernel support ve...
متن کاملClassification of co-expressed genes from DNA regulatory regions
The analysis of non–coding DNA regulatory regions is one of the most challenging open problems in computational biology. In this paper we investigate whether we can predict functional information about genes by using information extracted from their sequences together with expression data. We formalize this problem as a classification problem, and we apply Support Vector Machines (SVMs) with no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008